Konstantin Wernli

Curriculum Vitae

Gertrudstrasse 27 8003 Zürich ☎ +41 76 426 75 13 ⊠ konstantin_wernli@gmx.ch Birthdate: 01.12.1990

	Education				
09/2014 - now	PhD in Mathematics, University of Zurich, Zurich, Switzerland.				
09/2012 - 10/2013	MSc in Mathematics, ETH, Zurich, Switzerland, Grade point average: 5.83				
	(out of 6).				
	awarded "with Distinction", focusing on pure mathematics and its application in theoretical physics				
09/2009 - 3/2013	BSc in Mathematics, ETH, Zurich, Switzerland, Grade point average: 5.43				
	(out of 6).				
	with a focus on Computer Science and Theoretical Physics				
2002 - 2008	Matura and International Baccalaureate, Realgymnasium Rämibühl, Zurich,				
	Switzerland.				
	Master thesis				
Title	Computing Entanglement Polytopes				
Supervisor	Matthias Christandl				
Abstract	In Quantum Information Theory, Entanglement Polytopes are a way of classifying				
	multipartite entanglement coarsening the usual classification by SLOCC. The				
	thesis discusses algebraic, geometric and numerical ways of computing them.				
	Teaching Experience				
	reaching Experience				
09/2014 - now	Teaching Assistant, University of Zurich, Zurich, Switzerland, bla .				
	Organisation and Teaching of Exercise Classes and Exams				
2010-2013	Holiday Tutoring, ETH, Zurich, Switzerland.				
	Preparing and holding week-long exam preparation courses in analysis and linear algebra				
2010-2013	Teaching Assistant, ETH, Zurich, Switzerland.				

Teaching exercise groups for semester courses and exam preparation courses in various subjects including analysis, complex analysis, and linear algebra.

Attendance	of	Workshops	and	Conferences
------------	----	-----------	-----	-------------

- June 2015 **Rabat, Morocco**, Summer school on deformation theory, mathematical physics, and rational homotopy theory. Gave a minicourse on dgla/ L^{∞} -algebras governing deformations
- May 2015 **Bonn**, Introductory school on in the HIM trimester program on homotopy theory, manifolds, and field thoeries.
- January 2015 Les Diablerets, Winter school on mathematical physics.
- October 2014 Geneva, Conference on Higher structures in Geometry and Physics.
 - June 2012 Berlin, Summer school "Topology and groups" on geometric group theory.

Languages

German Native Speaker

English **Fluent**

Italian Fluent

French Intermediate

Advanced coursework

Mathematics

The h-cobordism theorem The h-cobordism theorem and its application as a proof of the Poincaré conjecture in dimension at least six

- Groethendieck-Teichmuller Introduction to the Groethendieck-Teichmuller group and various applications group
 - Further Functional Analysis, Differential geometry, Lie Groups, Representation Theory, Invariant Theory

Physics

Theoretical Physics Introduction to Electrodynamics and Quantum Mechanics for Mathematicians Further General Relativity, Quantum Field Theory, Quantum Information Theory Computer Science

Numerics I &II Theory and Practice of numerical solutions to ODEs and other problems

Theoretical Informatics Introduction to Computer Science

- Algorithms and Complexity Introduction to algorithm developping with runtime and exactness analysis
- Algorithms, Probability and Runtime and Efficiency Analysis of randomised algorithms Computing