The Fyodorov-Bouchaud formula and Liouville conformal field theory
Vortrag von Guillaume Remy
Datum: 07.03.18 Zeit: 17.15 - 19.00 Raum: Y27H12
Starting from the restriction of a 2d Gaussian free field (GFF) to the unit circle one can define a Gaussian multiplicative chaos (GMC) measure whose density is formally given by the exponential of the GFF. In 2008 Fyodorov and Bouchaud conjectured an exact formula for the density of the total mass of this GMC. In this talk we will give a rigorous proof of this formula. Our method is inspired by the technology developed by Kupiainen, Rhodes and Vargas to derive the DOZZ formula in the context of Liouville conformal field theory on the Riemann sphere. In our case the key observation is that the negative moments of the total mass of GMC on the circle determine its law and are equal to one-point correlation functions of Liouville theory in the unit disk. Finally we will discuss applications in random matrix theory, asymptotics of the maximum of the GFF, and tail expansions of GMC.