Approximate lattices in higher rank simple Lie groups
Vortrag von Simon Machado
Sprecher eingeladen von: Prof. Dr. Corinna Ulcigrai
Datum: 25.10.21 Zeit: 15.00 - 16.00 Raum: Y27H28
Strong approximate lattices are defined as discrete approximate subgroups of finite co-volume in locally compact groups. To make sense of the notion of “finite co-volume” for a subset that is not a subgroup we need to introduce the notion of invariant hull. Given a closed subset X of a locally compact group G, the invariant hull of X is defined as the set of those subsets of G that cannot be distinguished locally from a translate of X. I will discuss certain properties of the invariant hull, and of approximate lattices in general. I will then explain how a careful analysis of Borel cocycles on the invariant hull, combined with cocycle superrigidity results, enables us to characterise the strong approximate lattices of SL_n(R) with n at least 3. They correspond to sets of matrices with coefficients in the set of Pisot-Vijayaraghavan numbers of some real number field K.